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Stripwise Calculation of Hydrodynamic

Forces Due to Beam Seas

By Seizo Motora’

A method has been developed for calculating the oscillatory heave and sway force on a
surface ship at zero speed in beam regular waves, using an extension of the strip theory

of Korvin-Kroukovsky and Jacobs.

Calculations were made using the damping and

inertia coefficients of Tasai for the Series-60, 0.60 block coefficient ship model and very
good agreement was found with experimental measurements at Davidson Laboratory

and with theoretical values of Newman.

Comparison of calculated wave forces for a

cylinder with exact solutions of Ursell and Newman has also shown reasonable agreement.

THi1s note is an extension of Korvin-Kroukovsky and
Jacobs’ method [1]2 of evaluating the heaving force due
to head seas into the evaluation of heaving and swaying
force of a ship due to beam seas. A new attempt is made
to take into account the effect of damping.

In this paper, heaving force and swaying force are each
expressed as a sum of an inertia term, -a damping term
and a buoyancy term, and each term is corrected for the
effect of the orbital motion of the wave. This method of
expression was suggested by Jacobs [2] and it was also
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shown by Hu [3] that lateral force due to beam seas is
directly related to the added mass of the body.

Since the virtual inertia coefficient and damping co-
efficient are calculated for various section forms as fre-
quency-dependent functions by Ursell [4], Grim [5], and
Tasai [6, 7] it will be convenient to use this method.

Fundamental Assumption

Suppose a wave train of height 2k travelling to the
+y-direction impinges on a fixed body ‘whose axis is
parallel to the wave crest line, Fig. 1.

Within the linear range, the wave motion is the vector
sum of up-and-down motion and back-and-forth motion

‘with 90 deg phase difference. Therefore, if wave eleva-

tion is

T = ship draft
V = displacement volume per unit length
v = velocity
W = displacement of ships
Y,z = space coordinates
%» = instantaneous horizontal displacement of surface
water particle
Z = instantaneous heave displacement
Z, = instantaneous wave elevation
a = angular body coordinate
Y1z Y25, v8s = correction factors for inertia, damping, and buoy-
ancy forces in heave, respectively
Yy Y20y Yy = correction factors for sway forces
n = amplitude of body-generated wave
A = wave length
p = density
¢ =. total velocity potential
bom, by = velocity potentials due to body motion, body wave

. interaction, and wave motion, respectively
circular frequency '

[
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Fig; 1 Correction factors for heaving force

Zy=nh sin.(Ky — wt)

where
K = 2n/\ = w?/g
w = circular frequency of wave
h = wave amplitude
then, at the origin
Up-and-down motion, Z, = —h sinwl
Back-and-forth motion, y, = h coswt )

On the other hand, if the body heaves with amplitude Z
and frequency o, total hydrodynamic force will be ex-
pressed as follows:

: d*% dz '
F,= oVk,— + N,— Z 2
.= oVhke oy o T oA @
where ‘
7" = displacement volume per unit length
k. = virtual inertia coefficient
N. = damping coefficient
A = waterplane area per unit length

The first and the third terms are in phase with the motion,
and the second term is out of phase.

Replacing Z by Z,, and introducing correction factors
Y1z, Yo, 80d 73, for the effect of orbital motion of the
wave, we get

sz = 'lekaz f_i"_Zu_v + ’YZZNz

az,
i W + T'SngAZw (3)

v3, has been known as the Smith’s correction factor.
The first and third terms are in phase with the wave ele-

" vation, and the second term is out of phase with the wave

elevation.
In a similar manner, swaying force can be described as

' dyw 0Zy"
wa = ’YlyPka th‘ + 'Y2yN1/ ﬁ W

The third term represents the horizontal component of
the buoyancy. As y, is in 90 deg advance of Z,, Iy, is in
90 deg advance of F,,.

A%y

+ vapg 14 4)

Calculation of Correction Factors

Correction Factors for Heaving Force

Similar to Korvin-Kroukovsky’s method [1] velocity
potential around the body is expressed as

¢ = dm + Gow + P (5)

where ¢, is potential due to the motion of the body which
i NOW z€er0, ¢y, is potential due to body-wave interaction,
and ¢, is potential due to wave motion alone.

Correction for Inertia Term. For simplicity, let us take
a circular cylinder of radius a. Also assume that ¢, is to
be approximated using the potential function for a doub-
let in a uniform stream even though the body is actually
in stream of decreasing velocity. Thus we obtain
a2 aﬂ .
oo = Vup - COS = wh - eXZ cos a cos(Ky — wt)

()

where

'Imertia force is obtained by integrating pressure due to
v around the surface of the eylinder; Therefore

/2
%" a cosada

inertia F,, = p f

—n/2
/2
= pw?ha? f
—x/2

Owing to symmetry

T =Q

e~ Kacosa gin(Ky — wt) cos’ada (7)

/2
Flw inertia = — 2pa%w?h sinwt f e~ Kacosa ong

0
ra®

X (Ka sina) cos*ada =" — PTE. w?h sinwt

<

/2
><é f e~ Kacose  oog(Ka sine) cos’ada (8)
m™Jo

Y1z

Since pra?/2 = pV, and +w?h sinwl is vertical accelera-

tion of the wave surface d2Z,/dt* equation (8) can be re-
written as
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Fig. 2 Correction factors for swaying force

d*z,
sz inertia _PV W Y1z
)
where
4 /2 ..
Y = — f e~Kacosa co5(Ka sina) cos’ada
T Jo :

This term should be multiplied by k, = koks (Ursell’s
notation) to correct for the effect of free surface upon the
added mass coefficient.

- Therefore equation (9) becomes exactly the same form
as equation (3), and vi, in equation (9) gives the correc-
tion factor .

= 1= 2 (Ka) — } (Ka) ~ 1 (Ko)* + 0[(Ka)']

(10)
71, 18 shown in Fig. 2 on Ka base. :

Correction Factor for Buoyancy. The factor has been
known as Smith’s correction factor. Buoyancy will be
obtained by integrating pressure caused by the wave
itself over the body’s surface.

Fz buoy:mcy‘ = p f ¢w a cosada (11)
—u2 OF
Since ‘
¢ = hce®Z cos(Ky — wt) (12)
where ‘

¢ = wave celerity
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Fz buoyaney — SiD(Ky - wt) cosada

. x/2
3 f hewaeX?
—7/2
/2
pgah f Z sin(Ky — wit) cosada (13)
/2 .
Because of symmetry

F,, = —2pgah sinwt f
- o

/2
KZ cos(Ka sina) cosada

(14)

Since 2a = A, the waterplane area per unit length, 2pgah
corresponds to the change of buoyancy between a wave
trough and a wave crest. Therefore equation (14) can be
written as
Fp = —pgAh sinwtys, = va.pgAZ4
(15)

/2
Yi = . f e~ Kecose ¢os(Ka sina) cosada
0 .

This is an in phase force also, and vs, is expanded as follows:

v = 1+ y (Ka) + 3(Ka)* + 3?55 (Ka)“ + 0[ (Ka() ]5)
16

3. is shown in Fig. 1 on Ka basis.

Correction Factor for Damping. The damping-force co-
efficient NV, in equation (2) is defined as an out-of-phase
force, which causes formation of progressive waves.
These waves carry the energy away from an oscillating
body, i.e., cause dlssnpatxon of energy. Designating the
a.mphtude of the progressive wave by 7, and the ratio of -

“this amplitude to the body’s oscillation amplitude z by A,

the da.mpmg—fox ce coefficient N, is evaluated as
pgA®

wd

N, =

The ratio A was evaluated by Holstein [8], Havelock
[9], Grim [5, 10], and Tasai [6], for a body making heav-
ing oscillations in smooth water. In this case the undis-
turbed water flow relative to the body is the same at all -
depths. This evaluation can also be used in the case of a
water surface rising and falling as a train of waves passes
a restrained (stationary) body. In this latter case, how-
ever, the velocity of the orbital water motion is not con-

_stant but diminishes exponentially with depth. The

force resulting from the wave amplitude 7, is therefore
smaller than that due to an equal body oscillation ampli-
tude 2. The coefficient N, in equation (2) is therefore -
replaced by vz.N, in forming the wave force equation (3),
where 72, is the correction factor. The following text will
be devoted to the evaluation of this correction factor.
First, let us assume that the square of the amplitude of
the scattered wave is proportional to the impulse given-

- by the presence of the ship at the surface of the ship.

And since the contribution of the impulse at a deep

.position should be less than that at a shallow position, let

us assume that the contribution of each impulse to the
scattered wave is propormonal to an exponential of depth
times K; viz.
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Fig. 3 Swaying force
An?aAS fpeszt = ppeKZAS (17a)

where AS is a differential element of area on the ship’s
surface.

Next, let us consider two points which are on the sur-
face of water at the distance of %y, from the origin. Im-
pulses acting at these points will create symmetric wave
trains; one is propagating in the +y-direction and the
other in the —y-direction.

Waves created at point 4 are

m = 7 cos(wt £ Ky + Kyo)
— for +y-direction
+ for —y-direction

Waves created at point B are

72 = fj cos(wt = Ky — Kys)
— for +y-direction
. + for —y-direction

In the case of heaving, 7, and 7, are in phase; Therefore
7 = m + 72 = 27 cos(wt £ Ky) cosKy

In the case of swaying n, and 7, are 180 deg out of phase;
Therefore

n=m —n = —2sin(wt £ Ky) sinKy,
- The square of the amplitude of the scattered wave is

In|* = 4#% cos?Ky, for heave ‘
17)

2 = 472 sin?Ky, for sway
From (17a) and (17b) we get '
Al = ppeXZ cos?Ky,AS for heave
Alp]?* = pgeX? sin?Ky,A8 for sway
Therefore ‘ !
No|nfa f pdeXZ cos?KyedS  for heave
(18)

Nyl f poeXZ sin?Ky,dS ~ for sway

Introducing a certain unknown coefficient C, we get:

For generated wave by heaving of a ship

mom? = C f 0bmeEZ cos2Ky.dS (19)
For scattered wave by body-wave interaction
Moa? = C f pbnt™? s Ky
Therefore, correction factor v,, is given by
, ‘ f Dout™? cos2KydS
Yo = 2 = (20)
o f Some®Z cos?KydS o
Substituting
a2
dom = U, — COSa
’ »
= hwa coswt cosa at r = a
and
o = hwaeKZ cos(Ky — of) cosa atr = a (21)
into equation (20) we get
/2
f g~ 2Kacosa 0053(Kq sina) coseda
0 (22)

Yoz = /2 ] i
f e~ Kacose 0552(Kg sina) cosada
0

2. is shown in Fig. 2.

Correc!fon Factor for Swaying Force

Correction for Inertia Terms. The additional velocity
potential due to body-wave interaction assumes a form

a? .
bow = Uy ” S

(25)
a? . .
= wh = e&Z sin(Ky — wt) sina
Therefore
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Fig. 4 Heaving force

/2
Fvw inertia — P f b'ﬂﬂ a Sinada
—x2 Of
- (26)
' /2
= —pawh eXZ cos(Ky — wt) sin®ada
. —x/2
Because of symmetry
2,2
Fyp inertia = — mazw_h coswt

/2
><il f e~ Kacosr oo5(Ka sina) sinfeda (27)
T Jo

Since w?/g = 2x/\, and (27h/\) cos wt = wave slope,
equation (27) can be rewritten as follows: )
Fyp ineria = pgV X wave slope X 71, (28)

where
4 /2

TJo

Equation (28) should be corrected for free surface effect

Yy e~ Kacosa o5 (Ka sin a) sin® ada  (29)

by multiplying by k,. Thus we get

Foyp snertia = —kypgV X wave slope X 71,  (30)
As shown later, the third term becomes

F oy buoysney = — pgV X wave slope X v (31)

Thus, the inertia term almost doubles the swaying force.
1, is expanded as follows and is shown in Fig. 3:

JUNE, 1964

PHASE LAG IN DEGS

I( Ka)?
4

4, .
+ .o 0[(Ka)’] (32)

Correction for Buoyancy Term. The buoyancy term is
obtained by integrating pressure over the ship’s surface:

wa buoyaney = fp sinadS = p f(%) sinadS , (33)

vy =1— = (Ka) —
37

ot
Substituting ¢, = hce*Z cos(Ky — wt)
%" = heweX? sin(Ky — wt)
into equation (33) we get
Fpop = phowa f '/; &% sin(Ky — of) sinede (34)

. Owing to symmetry, and since co = ¢

/2
e—Ka cosa

Fyupy = —2pgah coswt f
‘ 0

X sin (Ka sine) sin ada  (35)

The integral is expanded as follows:
/2
f g~ XKacosa gin(Ka sina) sinada
0
T 4 2 s .
=-Ka|l— = (Ka) + = (Ka)* + 0{(Ka)*} | (36)
4 3 457

Therefore, equation (35) is written as

ZKh - .
Fuop = — Fﬂ;——- coswt vsy

2 .

= g9’ 27h coswt vay (37
2 A .
. = —pV X wave slope X 73,
where

5
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g 1, 3?41? (Ka) + E:_‘T (Ka)* + 0{(Ka)s} (38)

This is the in-phase component, and as shown in “Correc-
tion for Inertia Term,” this term has the same nature
and the same sign as the inertia term given by equation
(30). '

sy is shown in Fig. 3 on Ka basis.

Correction for Damping Term. Similar to “Correction
Factor for Damping,” let us assume that the square of

Y=

R
< 3
820} 5 Cb M
o« 5FT, SERIES 60 060 Cb MODEL
h .
<
o
o
£
:
én.o—
]
z
£
Q
[
z
o
= 4 n
05—z o4 o6 08 10

12 KT-:‘gif

Fig. 8 Heaving damping coefficient

amplitude of the scattered wave. is proportional to the
impulse given on (at) the surface of the ship: Therefore,
from equations (17b) and (18) and: similar to equation
(20), we get

o? qub,,,eKZ sin?K yodS
_ Mw __ .

@39

T ==
Tom” f%,,,e"z sin2Ky,dS
Substituting
a? . . .
¢m = —vy — Sine = —hwe sinwt sina
r
atr =a
and ) .
(40)
2
Do = —Vy a? sin @ = —nwaeeX? sin (Ky — wt) sin’ &

into equation (39) we get

/2 ‘ :
f e~ 2Kucose o05(Kq sina) sin?(Kasina) sinada
0 .

72 ,
f e~ Kacosa gin(Kq sine) sinada
)

: (41)
75, is shown in Fig. 3.
Comparison With Exact Solution

To evaluate the accuracy of this method, heaving force
and swaying force of a circular cylinder are calculated by
equations (3) and (4) and are compared with the ‘exact
value given by Ursell [11] and recently by Newman [13].

JOURNAL OF SHIP .RESEARCH
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Fig. 9 Heave inertia coefficient

Ursell has calculated theoretically the amplitude of
total heaving and total swaying forces acting on a semi-
submerged circular cylinder fixed on the water surface.
Ursell’s results are shown in Figs. 4 and 5 by thin solid
lines. '

. Recently Newman has shown that there are very sim-
ple relations between wave force and the amplitude of
progressing wave caused by the motion of a body in still
water. According to his expression, the amplitudes of
heaving force and swaying force are given as follows:

ghA
p, = P22 42
i (42)

pghd,
F, = 43
)= 2 43)

* where

Az = ratio of the amplitude of generated wave and

_ amplitude of heaving
Ay = ratio of amplitude of generated wave and ampli-

tude of swaying.

Fz for a circular cylinder is thus calculated by equation
(42) making use of Az caleulated by Ursell [4] and Fyis
also calculated by equation (43) making use of Ay ob-
tained by Tasai [7].

Asseen in Figs. 4 and 5, results obtained by Newman’s
theory coincide with Ursell’s results.

Fig. 4 shows the in-phase swaying force which is a sum
of inertia (first term) and buoyancy. (third term) of
equation (4), and the out-of-phase force which is the
second term of equation (4). A thick solid line shows the
total force. '

The total force estimated by this method agrees very
well with the exact value when Ka is less than 0.4.
When Ka is greater than 0.4 the estimated value still is
in fairly good agreement with the exact value up to Ka =
1.3. If the cylinder is assumed to have typical ship
proportions, i.e., length/beam = 7.5 or length = 15 X
cylinder radius, then Ka = 0.4 corresponds to a wave

JUNE, 1964
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Fig. 11 Sway inertia coefficient

length to ship length ratio, \/L = 1.0. Thus, the fore-
going comparisons show that this method is expected to
agree very well for wave lengths longer than \/L = 1 and
fairly well for waves between /L = 1.0 and 0.3. By way
of contrast, the dash-double-dot line in Fig. 4 shows the
uncorrected force, i.e., when vi,, vz, and vz, in equation
(4) are all unity.

Fig. 5 shows the in-phase and out-of-phase heaving
forces; the solid line represents the total force. The esti-
mated value by this method agrees quite well with the’
exact value when Ka is less than 0.4 or when the wave
length is longer than 15 times the cylinder radius.
Agreement is still fairly good for wave lengths between
15 and 7.5 times the cylinder radius, or if cylinderlength
= 15 times radius, between \/L = 1.0 and 0.5.

Fig. 5 also shows the heaving force without correction.
Sintce the virtual inertia force and the buoyancy have a
180-deg phase difference, the effect of the correction is

7



not as marked as in the case of swaying force. But for a

section form other than a circular section—for instance,

shallowdraft ship which will have larger virtual inertia

and less buoyancy—the correction for the orbital motion
- should be more effective. )

Amplitude of Reflected Wave

Amplitude of the reflected wave due to the presence of
a circular cylinder was calculated theoretically by Ursell
[11]. To examine whether the method of correcting the
damping factor is reasonable, let us calculate the ampli-
tude of the reflected wave by the present method and
compare it with the exact solution.

When a body heaves with amplitude z, then the ampli-
tude of the generated wave is given by

N = AZ (44)
As described in “Correction Factor for Damping,” it is
assumed that, owing to the effect of orbital motion, the

_square of the amplitude of the wave generated by heaving
of a body is reduced by a factor of v, to obtain the square
of the reflected wave amplitude.

Tow = Y. /me = 72,/ A2 (45)
Similarly, we get for swdy
Myw = 'YZVI/’W = 72111/’Auy (46)
where
A, = ratio of amplitude of generated wave and
amplitude of heaving
A, = ratio of amplitude of generated wave and

amplitude of sway

7. and 7, have a phase difference, as shown in Fig. 5.

Taking into account the phase difference and super-
posing them, we get approximate value of the amplitude
of reflected wave, which is shown in Fig. 6 by a thick solid
line.

Fig. 6 also shows the exact value calculated by Ursell.
The approximate value agrees with the exact value very
well when \/L is larger than 0.5.

Wave Force of a Series 60 Ship Form

The heaving and swaying forces of a Series 60, 0.60
block, 5-ft model were calculated using the strip method
and are shown in Fig. 7 together with experimental re-
sults obtained at Davidson Laboratory by Lalangas
[12]. Results obtained with Newman’s theory [13] are

- also shown in Fig. 7 for the comparison.

For the inertia and damping coefficients in heave, use
is made of the calculated results from the strip method of
Tasai [6]. These are given in Figs. 8 and 9. Those for
swaying are calculated from [7] and are given in Fig. 10.

As seen in Fig. 7 agreement between calculated value
by this method and measured values is fairly good and a
reasonable agreement between calculated values and
Newman’s theoretical values is also recognized. :

It is supposed from the trend shown in Figs. 3 and 4

that calculated values are slightly overestimated for
swaying and underestimated for heaving in the short
wave range. '

Conclusions

1 Ttisshown that the wave force acting on cylindrical
bodies resulting from beam seas is expressed by the sum-
mation of an inertia term, a damping term, and a
buoyancy term. Correction factors for orbital motion of
waves for each term are obtained.

2 Approximate value of wave force thus calculated
was compared with Ursell’s and Neuman’s exact solution
for a circular cylinder, and showed reasonable agreement
for wave lengths greater than 7.5 times the radius of
cylinder. Therefore, if ship length is 7.5 times the beam,
this approximation should be reasonable when wave
length is greater than half the ship length.

3 Wave force acting on a Series 60, 0.60 block model
was calculated and compared with experimental data
obtained at Davidson Laboratory.

The calculated results from the theory presented in
this paper as well as from Newman'’s theory agree quite
well with experimental data. ‘
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